Recently I presented a paper called ‘Materialising robot platforms’ on the affordances, environments and networks of three Korean service robots. The topic of my paper was something of an outlier in a conference called ‘Platform Politics’ at Anglia Ruskin University, Cambridge, organised by Jussi Parrika and Joss Hands.
Most other papers identified either with political theory and technology, or with platform studies: analysing how the underlying technological infrastructures play out in fostering certain social and political outcomes. My paper was closer to the latter category, examining in particular some of the political implications of technological artefacts: the placement of sensors and motors in robots that respond to touch, allow remote teaching, and bow to indicate subservience.
The conference was video recorded in a pretty rudimentary way using UStream. It is pretty hard to follow the paper from this video. The abstract is below (although of course this doesn’t really reflect what I talked about).
http://www.ustream.tv/flash/viewer.swf
Chris Chesher Research and development in robotics is currently developing a range of network-connected material platforms. This practice is producing robots increasingly tuned towards particular lifeworlds: language teaching robots in classrooms; service robots in public spaces; container-handling robots in ports; rescue robots in earthquake zones, and so on. These specific platforms diverge significantly from the general-purpose robot of popular imagination as robots are made increasingly real as they are themselves formed by their multiple attachments across physical, social and institutional spaces. This paper draws on recent interviews with researchers at the Australian Centre for Field Robotics, and company representatives at the Robotworld tradeshow in Korea. The interviews examine the rhetoric and practices by which robot platforms are increasingly blackboxed as technical innovations in ways that are informed by narratives of the application environments, and strategic connections with institutional networks. A robot platform is constituted by a singular combination of elements: sensors, operating systems, programming and effectors (motors, screens, speakers, etc). However, these components must work together towards creating a robot that can perform as an autonomous
actor in forming relations within specific environments. In talking about the robots, engineers, developers and salespeople often provide rich narratives featuring the robots in particular physical and social environments. Developers are also aware of the institutional connections in operation that will be crucial in securing the robot’s current and future existence. The Korean company Dasarobot’s English language teaching robot must capture the interest of teachers, but outside their direct affiliations with schools. Development communities are establishing core features of contenders for future robot platforms, abstracted below the level of particular applications. For example, many robots use similar autocharging systems to respond autonomously to the common problem of a low battery. Some robots use custom operating systems, while others use open source ROS such as those from Willow Garage and Microsoft. The range of issues in robotic platforms gives the problem of software platforms a material base, as seen in the collaborations and conflicts between key mechatronics disciplines of software engineering, mechanical engineering and electrical engineering. Meanwhile, as robotic platforms stabilise, there are increasing enrolments of other disciplines: media art; media practice; performance; design; marketing; cinema and so on.
Leave a Reply